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This research memorandum presents a unified treatment of the assump-

tions and theor concerning the distribution of radial error, and damon-

stretes its statistical application in war gamiing. The density function

and cumulative distribution function of the isdial error are derived and

grapned for one, two, and three dimensions. For each of these cases,

formulas are given for the expectation, standard deviation, and median of

the radial error. Tables of pertinent conversion are provided. Results

are given for the distribution of detonation points iu three dimensions

that are useful in var games euloyin" atomic rockets or torpedoes.
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a W ratio of C too (a6)
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Fn(r) - cumulative distribution of radial error Rn (4)
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g (k)(x) = k-th derivative of g(x)

Hn(s) - cumulative distribution functiou of standardized
radial error S (31)a

hn(s) d density function of standardized radial error Sn (32)
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a - dcoy vartable
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I. INTRODUCTION

When studyirnW a phycizal zystem, it is frequent)y necessary to devise

a mathezatical model involvi:a the distribution of the lenttb of a rando:a

vector vhose componenta are independently, normally distributed about the

2
orgio iwith variance 0.0 A model of this type is often useilXU in the

physical sciences and .-as been emplojed by operations analysts in the

theory of bombInG error. Tr.is research -morsndum defines such a model.

investigates its theoret-ical properties, and applies it to the statistical

distribution of weapon rrdial error in war gaming.

In war gaming when the desired ground zero for wi atov.ic weapon is

given, the actual ground zero can be statistically determined by random

sampling. The statistical technique for doing this is elementary, but no one

has bothered to spell it out in a step-by-step manner for the use of per-

sons unfamiliar with statistics. Moreover, the three-dimensional case has

not been fullly treated previously despite the fact that atomic rockets and

torpedoes are critical veapons in many detailed war games. Consequently,

it is believed that 'a unified treatment of the assumptions ard theorems

concerning the distribution of veapon radial error is needed for ready

reference. Formalas, derivations, graphs, and constants for the one, tw'o,

and three-dimensional cases are collected here to aid the operations

analyst, and an example is given to illustrate the application of the

statistical model.

It is assumed that the n rectangular ooordinates of the detonation

point are mutually independent and that each hma a C.aussian distribution

with expectation zero mu, I variance 02. Thus the model is based on the

n-dimnsional sperical G Lussian distribution since the coordinates have a
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cormon variance. In an ellipsoidal model where the standard deviations a

are unequal ve have the approximation

1/n
o (o{. . .•

This is a good approximation vhen the standard deviations axe nearly

equal, and It is still adequate when the largest standard deviation is

twice the smallest. For extreme ellipsoids, hovever, the above approxi-

mation should not be used.

The statistical method of determining the detonation point requires

Just three inputs: the aiming point, the direction of approach to the
*

target, and the means of delivery of the veapon. From the first two we

construct a rectangular coordinate system at the aiming point with one

axin oriented along the approach direction. From a knowledge of the means

of weapon delivery w choose a median radial error. The median radial

error in the one, tvo, and three-dimensional cases is, respectively, the

linear probable error, the circular probable error, and the spherical

probable error. "sing a %onversion factor derived here, the median radial

error is converted into a standard deviation. Finally, each of the n

coordinates is select.ed from a table of random Gaussian numbers corres-

ponding to this standard deviation.

Gtenerally the terminology and notation used here conform to that of

current books on probability and statistics. For example, folloving the

modern trend, random vareables are capitalized to distinguish them from

ordinary variables.

M&thematically, tl -s input is required only in the ellipsoidal
model; howvver, because )f tactical enonsiderations it is often useful
in the spherical model.
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II. DISTRIt•OK C' THE RADIAL URROR

To find the distribution of the radial error in me, t'o, and three

dimensions v will derive the general fimatim and then set n equal to 1,

2, and 3. Let 1(x; p,2) denote that the random variable X has a awussian.

distribution with expietation p and variance a2, i.e., the density f'mntion

fer X is
1. e-(Z-P) )2/20'2

Let

g(x) O-- -/20 < x< (

be the density tfuction of a standard Gaussian rando variable x. Also let

'g(X; n) denote that the random variable X has a Chi-sqa•re distribution

with n degrees of fredom, i.e., the density funation for X is

kn(x) - 1 ixn/2-1 e*X/2 x ? 0.rjn/2)•2x o

Asuaming

we see by division that

.- t(x 4l; 0, 1) for 1 . , ... , n.

But the square of a standard Gaussian randcm variable has a Chi-square

distribution with one degree of freedom, i.e.,

1for i a , ,*n,

Moreover, the aim of n independent Chi-square random variables with one

degree of freedm has a Chi-square distribution with n degrees of freedom, i.e.,

n

i2X
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Since the n-dimensional radial error random variable is defined by
n

2 . EX2
n -imii

we see that

2 (R2/o 2 ; n).

So the density function for Rn2/a2 IS

k•(r 2 / F(,!22' r2 (2)n/2-l1 -r2/2a 2

By transformation of variable the density function for R ni
2 ' 2 2r 2 \ n/2- -r 2 2

f (r) En1
-- k (r /a _ 1 r -an I ,2 . . 2 2

- 1-r .,. /2a
f-(n/2)2n/yl•' aa

Therofore the density function of the rwAom variable R isn

n-i 2 2
fn(r) . On -r -2c r 0 (2)

vhere )
en " ,n221..(3)

In particular w have for n 1 1, 2, 3

fl(r) - 1.-r
2 12a)2  1 e2a

f r -r2  r 2 /202 ar 2 / r2 /2o2

f7,22f 1- ~ e

since "(l/2) = *1/2 andF(t + 1) - tF(t) for t>O.
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Thb cumulative distribution of the random variable Rn is

r r

7n(r) - P(R j _r) j (u)du u o D e- 2•/2a du.

0 0
u22

Letting t - 2 /22 we get
2 22 2
r /20 /2a

n(r) 2 c Jt(n2)/9 a- t dt 1:-/-1 e dt

0 0

f(n/2)

-2
F(n/2)

wbere C(u) is the incop'lete 06a function.

Threfore

Fn(r) - 2I(r 2 /2d2, n/2) r > 0 (b)

Vwere I(t,u) is the Izooplete Gawm funotiom ratio.

In particular we havy for n t 1, 2, 3

71 (r) - 21(r 2 /2cý 2 , 1/2)

r 2 (r) - 21(r 2/2c , 1)

7 3 (r) = 21(r 2/20 , 3/2).

Hovevr, we vill derive other expressions for the cumulative dis-

tribution functions and density functions %bich Vill permit their graphs

to be plotted more easily frim available tables.



When n - 1 w have

r r
r ~ r 2,- 2

(r) r z(u du O-e / dna.

0 0

Letting t - u/o w got
r-/a r/a

dzr.. t ; e t

0 0

Therefore the cumulative distribu+' c function of R Is

1 (r) - 2j(k/*) (5)

where x

J(X) - f g(t)dt.

0

Thus the density function of R1 is

f (r) - • g(r/a). (6)

When n - 2 v have

rr

F 2 (r) r f t(u)du - J e- jk 'l u.

o 0
u2 2

Letting t - u/2o we get 2 2
r22 /2 r2/2ar -t -t "2/2(

F2 (r) - I e dt a--e t -r e2 /2

0 0

Therefore the cumulayive distribution function of R2 is
2

2( T 2
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This can be revritten as

F2 (r) - 1 -4-5'g(r/o). (9)

Thus tb. density ftmotion of R2 Is

f2 (r) - -i g(ll(r)(/) (10)

When n a 3 w have
r r

7 3(r) f rudu u 2 a_2/0du

0 0
IAtting t, u/o we got

J t 2 0-t 2 /2F • ( r - t .

0

lntegration by parts gives

,(r "j•'{" t. t/2 f -t2/2I)

0 0

2 -r 2 /2, 2 + V- -1 0t 2 /2 dt

0

2/a

... 1 ,.t 2/2 -2
0 v~

Therefor* the cumulative distribution fmction of A is

2
7,(r) - 2J(r/o) - '*2,(r). (a)

This eom be Y*ewtten as

_F2 -r .- 2/202
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2 2 E.<,/ci - ;,-(r/,) g(r/¢)]

%tre S(t) is the Hermit* polynacial of order k defined by

Th. the desity functio of Rd L

f-(r) -k ) [(r/) + )(r/o) . (1,)



9

iI!. *ZP'rTCIR AND STANDAIM KCVI IOK CI RADIAL ZMCR

Next we f4% +Uft %~ti -- A-U 4L & _A.A A..- ---A

raMn variable Rn. The first n nt ofr n is

SnJr ft(r) dr fr rn'1 -rr2 /2a 2 dr a 4r e r 2 /21 2 dr

0 0

Lotting t w r/(2a)1/2 we got

S(R e1 + 1/2 tn *t 2 d * de/2 +1/2 t + 1)/21
""9(n/2)12-1•

0

.21/2 7[(n 4 )L .

Therefore the expectatim of 1n is
on end

whbere

Sr(21/2 17 l) (11)

17(n/2)

In particular we bays for n a 1, 2, 3

2X/2 FIl) C- a 1 0. -7979 a

*2 1 a M 1.253, a

i 2

/2 a =I2 a2i ac 1.5958 a.
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!be sftmd samnt of is

E (R 2 r r f(r) Ir.Jr2 a n e-r 2/2(1
0 0

' ~22
rOn~l e r2/20 r

ne j n ~ /2

0
Letting t u r 2 /2a 2 w get

ER(R2 ) 022n/2 J tn/2 eot dt m2 2 n/2 C ["(n/2 + 1)en)n

0

oa•12
"r,2;e12-[,("2 

+ 1) 
n 

.f"(,,i2 
n

Therefore the second moment is

(R) 2 no2. 
(16)

The variance C2 of R Is
n n

v('n) E(R 2 ) E2(R (, 0)2. 2) 2.

Therefore n

n ( ?
where

V~, + 1)/2
(- /2)•

In prticu La
2 r r2 2f2 2) 2 .at 2 a ( u20 , .•(

1 l-n
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2•
2 r( ( 2 2 2 2
'2 FI- I)J 2'

2 3 F(2) / a2 83 2 2
S[R(3/2)

T tberfore the standard deviation at' Rn is

a a d (19)

n n 1/2 (20)

In prtioulAr • havv for n a 1, 2,

2 1/2l " (x - ) a "-o.6o28

x1/2

v2 w(2- - /2 a 0.6551
2

(3-8 1/2 ao63
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IV. WDIAI Or THE RADIAL ERR

The 4ian of th. r*Mm vvxiable % is d*efi4 impliaoltly by the

equAtien

I(R n n(%) ,a 1/2.

We vill solvv, this equatio in the one, tw, and t•hr*-diMexsiM l caes.

ben a w 1 we have from (5) that

F 1 (r) . 2J(r/a).

The median a, satisfies

1/2 a F (a1) a 2J(a/l)

or

(l ilW. (21)

Rese from tables of the standard Gaussian distributian functioc w got

the approximation

a I/a ; 0.6745.

Therefore the uedian of R1 is

a, a 1a (22)

where

% 0 o. 76r 5. (23)

When n - 2 me have from (9) that

F2 (r) a 1 - g (r/o).

The median a 2 satisfies

1/2 - 1(a2 ) - 1 . 'rT; (aIo).

Thus

g(a2 /cr) - 1 o.19947.



Henee frow tables of the standard Gaussian density bmncticv we geot tne

approximation

aq./ 77~4

Therfore the median of R2 in

2 a .2, a(24)

where

&2 1 .1774 (25)

We could have used (7) directly to get the exact expression

a, - V2- =og52a. (26)

Fran this ie see that in terms of aý the cumulative distribution function

of R i sOf R 2 is 2 ( r.) wP( R 2 S r) w 1 2"r 21% ,2 ( 7

It is interesting to note that no sueh exact expressions can be found uben

n % 1, 3 mines teravise integration of the infinite series involved yields

an infinite series whose root can not be given in closed form.

When n w e i have. fro (12) that

P r 2 [ J(rlo) +g(l) (r/a)]

The dian satisfies

1/2 -F 3(a) 3 2 jJ(a3/o) +g

or

(g(l) (a/g) ./ /0) . (28)

Heoe from tables of the standard Gaussian density fuwction ve get the



approximation

%/ 1.5382.

Therefore the median of R is

-La 5 (29)
where

a & 1.5382. (50)
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V. STANDARD RADIAL MRR(P

It In rette~u vn it ow 4- r zzw-t b

Geusian standard deviation rather than the radial erro £t.lf. LAt the

rando variable

S . R/o

dente the standard radial error. The culative ditributionftm fction

of the random varipble Sn is

Therefore, frm () we goet

Hi(,) M 2(s /2, 1n/2). 0 - 0 (31)

?bva,, by using (5), (9), and (12) ve find that

H 31(a) - 2J(s)

H2(,) . I ./r2" g(,)

H3(s).- 2 [J(,) + g(l)(8)j]

Thee eumlative distributio functions am graphed in Fig. 1. The

4ensity twiotioa of the randoi variable % is

h') 1-- rI fr,(r) 01 f f(c)" a •o(c).

Therefore, fr (2) w get
h2() a a n ' n- ,2/2. •2> 0 (32)

?b,, by usin. (6), (10), ar (13) v find that

(,) - 2g(s)

h (s) - -[g *(1)(a)
h 3(2). g[(,). +a(2)(,)I
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7bee density tfmotions are grapbed in 714. 2.

r (14) the epectatio of Sn is

I(s) n n. (33)

From (17) end (19) the variance and standard deviation of Sn are, respeotiwely,

v(s) -n v (3 4)

and

D(Sn) d (35)

Frm (22), (24), and (27) the =*Uan of Sn is

M(S - a . (36)

Table 1 mmarizeas the pertinent statistical constants and Table 2 gives

the conversion factors that inter-relate these constants.

Table 1

Statistical Constants

I1 en vn db a n

1 0.7979 0.3634 O.6028 0.6745

2 1.2533 0.1292 0.6551 1.177k

3 1.5958 0.4535 o.673 1.5382
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Table 2

Co-n in~i Factors

a O.,7979or w lo183c0i,

a, - o.67". - o.8453p

a = 1.II826ci - 1.253NL

V 1.2530o - 1-o 6 1. 2

a2  1.17Ta 'o.939i2 . 1.71456a

a - o0-89(cz 2 a o.'7 2

-3 = 1.5958 a3

a 3- 1 .53 8 2a .- 2,2805a,

0 O.6 501a3 a O'6267143
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VI. STATISTICAL APPLICATION IN WAR GAMING

For war gaming purposes, the detonation point of the weapon can be

determined by random sampling from just three inputs:

(1) aiming point

(2) direction of approach

(3) mans of delivery.

The" give, respectively:

(1') origin of the coordinate system

(2') orientation of the coordinate system

(3') edian radial error of the wapon.

Frow the aiming point the origin of an n-dimensiomal rectangular

coordinate system Yl' 0., Y n is located. From the direction of approach

to the target the axes Yl' "*' Y n are oriented so that one of them, say

Tl, lies along the approach direction. From the means of delivery of the

weapon the dian radial error is ohoeen. The median radial error it the

radius of the n-sphere vithin which the weapon has a 500/o probability of

detonating. Now it is assumed that the radial error has an n-dimensional

spherical Gaussian distribution centered at the &imin point am an origin

and msled by the standard deviation o. But it wa shohv eaLrler that

is related to c by the equation

an - a a (37)

where a is a known constant and a is the standard deviation of the one-

dimensional Gaussian distributions that compose the n-dimensional spherical

Gaussian distribution. Hence, knowing an and a 0 w solve (37) for a. This
an

determines vtich Gaussian curve governs the dixtribut.i n of the detonation

point aCo eO&Ai of the "xes Yl, 00f Y.
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From a table of standard (i.e., sero expectation and unit variance)

Gaussian rndoma numbers we select n numbers xi, ... , xn. Nov if a - 1

these numbers would suffice, but in general w must use a as a scaling

constant and determine the rectangular coordinates y1 , "'', Yn of the

detonation point from the equations

Because of (22), -, ... , n ()
%l"k"x ,.. n (39)

and we plot the desired detonation point (yi, Y.).

The folloving example illustrates the method vhen n - 2. Given an

&I-Ing point, a direation of approach from Wet to East, end a CEP of 1500

feet, w statistically determine the detonation point as follows:

Frn(37) we find

IL2  
1.1 - 12T0 ft.

Selecting two numbers from the table of standard Gaussian random numbers

vget

xI - - 1.030

Yl a C a 1 - 1310 ft

Y2 M M2 - 68 ft

'Uhieh Ami plotted in Fig. 3.
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Fig. 3 - Plot of radial error when n - 2

The method for thr.e-dimensional wapons suh as rockets or torpedoes

is analogous. When n - 3 we find from (37) that

is the proper relation. We select three numbers x , x 2 , x3 from the table

of standard Gaussian random numbers. They are conyrted to yl, Y2' Y3 by

means of (39). Finally, the detonation point (YI' Y2 ' Y3) is plotted in

the three-dimensiona.J space with origin at the aiming point and with the

Y1 axis along the approach direction.

The foregoing statistieal method applies to non-gross weapo errors.

We might, for w- gaping purposes, define a gross error by means of the

equations

Y," • =it . i, . . n (140)

and rerard it as a random eveat following so given probability distribution.

?or exaNWle, if it is asesmed that the probability of a gross error is

0.l, .then a table of -4niform (i.e., equi-probable) reAdan digits is used

to sample statistically as follow.. If a vaeapo are to be used, then m

digits are selected imdependently, and Only if a digit is zero (say) is the

Corre6pandimg attack ruled a gross error.
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